Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1528(1): 13-28, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615212

RESUMO

An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.

2.
Curr Biol ; 32(15): 3423-3428.e3, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750054

RESUMO

A foundational pressure in the evolution of all animals is the ability to travel through the world, inherently coupling the sensory and motor systems. While this relationship has been explored in several species,1-4 it has been largely overlooked in primates, which have typically relied on paradigms in which head-restrained subjects view stimuli on screens.5 Natural visual behaviors, by contrast, are typified by locomotion through the environment guided by active sensing as animals explore and interact with the world,4,6 a relationship well illustrated by prey capture.7-12 Here, we characterized prey capture in wild marmoset monkeys as they negotiated their dynamic, arboreal habitat to illustrate the inherent role of vision as an active process in natural nonhuman primate behavior. Not only do marmosets share the core properties of vision that typify the primate Order,13-18 but they are prolific hunters that prey on a diverse set of prey animals.19-22 Marmosets pursued prey using vision in several different contexts, but executed precise visually guided motor control that predominantly involved grasping with hands for successful capture of prey. Applying markerless tracking for the first time in wild primates yielded novel findings that precisely quantified how marmosets track insects prior to initiating an attack and the rapid visually guided corrections of the hands during capture. These findings offer the first detailed insight into the active nature of vision to guide multiple facets of a natural goal-directed behavior in wild primates and can inform future laboratory studies of natural primate visual behaviors and the supporting neural processes.


Assuntos
Callithrix , Visão Ocular , Animais , Mãos , Força da Mão , Humanos , Insetos , Comportamento Predatório
3.
PLoS Comput Biol ; 17(11): e1009569, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762650

RESUMO

Emergent response properties of sensory neurons depend on circuit connectivity and somatodendritic processing. Neurons of the barn owl's external nucleus of the inferior colliculus (ICx) display emergence of spatial selectivity. These neurons use interaural time difference (ITD) as a cue for the horizontal direction of sound sources. ITD is detected by upstream brainstem neurons with narrow frequency tuning, resulting in spatially ambiguous responses. This spatial ambiguity is resolved by ICx neurons integrating inputs over frequency, a relevant processing in sound localization across species. Previous models have predicted that ICx neurons function as point neurons that linearly integrate inputs across frequency. However, the complex dendritic trees and spines of ICx neurons raises the question of whether this prediction is accurate. Data from in vivo intracellular recordings of ICx neurons were used to address this question. Results revealed diverse frequency integration properties, where some ICx neurons showed responses consistent with the point neuron hypothesis and others with nonlinear dendritic integration. Modeling showed that varied connectivity patterns and forms of dendritic processing may underlie observed ICx neurons' frequency integration processing. These results corroborate the ability of neurons with complex dendritic trees to implement diverse linear and nonlinear integration of synaptic inputs, of relevance for adaptive coding and learning, and supporting a fundamental mechanism in sound localization.


Assuntos
Mesencéfalo/citologia , Neurônios/fisiologia , Estrigiformes/fisiologia , Estimulação Acústica , Animais , Biologia Computacional/métodos , Colículos Inferiores/fisiologia , Localização de Som/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...